Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Document Type
Year range
1.
Medicine (United States) ; 2(4):289-292, 2022.
Article in English | EMBASE | ID: covidwho-2212969

ABSTRACT

Severe acute respiratory syndrome coronavirus-2 infection is usually self-limited, with a short duration for viral shedding within several weeks. However, prolonged viral shedding has been observed in severe or immune-compromised coronavirus disease 2019 (COVID-19) cases. Here, we reported that three young adult cases of COVID-19 patients, who were either immunosuppressed nor severe, showed prolonged viral RNA shedding from the upper respiratory tract for 58, 81, and 137 days since initial diagnosis. To our knowledge, this is the longest duration of viral shedding reported to date in young adult patients. Further studies on factors relevant to prolonged viral positivity, as well as the correlation between viral positivity and transmission risk are needed for the optimal management of COVID-19 patients with prolonged nucleic acid positive. © Copyright 2022 The Chinese Medical Association, published by Wolters Kluwer Health, Inc.

2.
Guang Pu Xue Yu Guang Pu Fen Xi/Spectroscopy and Spectral Analysis ; 42(9):2757-2762, 2022.
Article in Chinese | Scopus | ID: covidwho-2090458

ABSTRACT

COVID-19, which has lasted for a year, has caused great damage to the global economy. In order to control COVID-19 effectively, rapid detection of COVID-19 (SARS-CoV-2) is an urgent problem. Spike protein is the detection point of Raman spectroscopy to detect SARS-CoV-2. The construction of spike protein Raman characteristic peaks plays an important role in the rapid detection of SARS-CoV-2 using Raman technology. In this paper, we used Deep Neural Networks to construct the amide I and III characteristic peak model of spike proteins based on simplified exciton model, and combined with the experimental structures of seven coronaviruses (HCoV-229E, HCoV-HKUl, HCoV-NL63, HCoV-OC43, MERS-CoV, SARS-CoV, SARS-CoV-2) spike proteins, analyzed the differences of amide I and III characteristic peaks of seven coronaviruses. The results showed that seven coronaviruses could be divided into four groups according to the amide I and III characteristic peaks of spike proteins: SARS-CoV-2, SARS-CoV, MERS-CoV form a group;HCoV-HKUl, HCoV-NL63 form a group;HCoV-229E and HCoV-OC43 form a group independently. The frequency of amide I and III in the same group is relatively close,and it is difficult to distinguish spike proteins by the frequency of amide I and III ;the characteristic peaks of amide I and III in different groups are quite different, and spike proteins can be distinguished by Raman spectroscopy. The results provide a theoretical basis for the development of Raman spectroscopy for rapid detection of SARS-CoV-2. © 2022 Science Press. All rights reserved.

SELECTION OF CITATIONS
SEARCH DETAIL